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Abstract 
 

In this paper, we propose a feature transformation 
method to maximize the distances between the Gaussian 
mixture models for speaker verification. The feature 
transformation matrix is optimized by using particle 
swarm optimization. We evaluate the transformation 
using YOHO speech data, and the transformation is 
applied to some speakers who give poor performance. As 
the result, the overall equal error rate is reduced to 
1.71% from 1.97% of the baseline. 
 
1. Introduction 
 

Speaker verification is a kind of speaker recognition 
which identify human with their voices, and has many 
potential applications. However, the level of the accuracy 
of the current speaker recognition systems has not reached 
that the users expect. The technology is still developing in 
various aspects which include extracting a good feature 
for speaker discrimination, building good speaker models, 
and normalizing the scores. Currently, melcepstral 
coefficients and Guassian mixture models[1] are the most 
general approach for features and models respectively.  In 
this research, we aim at improving speaker verification 
performance by making a better recognition model. We 
can reduce the error by enlarging the distances between 
the models. We propose to make the models with larger 
distances by transforming the feature. The optimized 
transformation that maximizes the distances between the 
models can be found by using an optimization technique 
called particle swarm optimization (PSO). Since PSO can 
find better solutions incrementally, we can find an 
optimized feature transformation that enlarges the 
distances between the models. 

In the next section, we will introduce GMMs and the 
distance measure for GMMs based on Kullback-Leibeler 
divergence. Section 3 describe the proposed optimization 
method, and section 4 reports experimental evaluation on 
speaker verification. Finally, section 5 summarizes the 
conclusions drawn form this study. 

 
2. Distances between the GMMs 

2.1. Gaussian Mixture Models 
 

Gaussian mixture models (GMMs) [1] is the most 
prominent approach in speaker verification systems. The 
GMMs are represented by weighted sum of Gaussian 
probabilistic density functions of feature vectors extracted 
from the voice. For a D-dimensional feature vector x , the 
Gaussian mixture density for speaker s is defined as 
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where M is the number of mixtures and s
iw , s

iμ , s
iΣ  are 

weight, mean and covariance of each component 
respectively. The mixture weight, s

iw , satisfy the 

constraint ∑ = =M
i

s
iw1 1 . sλ  is the parameters of speaker s’s 

density model. For efficiency, many applications use 
diagonal covariance matrix s

iΣ [5]. 
 
2.2. Kullback-Leibeler Divergence 
 

Kullback-Leibeler (KL) divergence is the natural way 
to define a distance measure between probability 
distributions [2][3]. KL-divergence between two 
distributions f and g is defined as 

( ) ∫= dx
xg
xfxfgfKL
)(
)(log)(|| . (4) 

However, the equation (4) is difficult to apply to GMMs 
because GMM has two or more distributions. In this paper 
we use matching based approximations method which is 
proposed in [2]. We can compute distance between two 
speaker models Aλ , Bλ  using matching function[2] 
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and KL-divergence between the Gaussian component 
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Figure 1.  A matching function between the 
Gaussian components of two GMMs 

 
Figure 1 shows a matching function between the Gaussian 
components of two GMMs (see equation 5). This example 
illustrates that the first and second components of Aλ  are 
the closest to the first component of Bλ , and also the Mth 
component is the closest to the Mth component of Bλ . In 
this paper, we use symmetric version of KL divergence 
expressed as ( ) ( ) ( )ABBABA KLKLKL λλλλλλ ||||, += . 
 
3. Maximizing Distance between two GMMs 

 
In universal background model (UBM) based speaker 

verification system [4] which is the most prominent 
method, the verification task can be started as a 
hypothesis test between two hypotheses: 

 
:0H  
:1H  

Y  is from the hypothesized speaker S  
Y  is not from the hypothesized speaker S . (7) 

 
The optimum test to decide between theses two 
hypotheses is a likelihood ratio test given by 
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where )|( 0HYp  is the probability density function for the 
hypothesis H0  which is computed for observed speech 
segment Y (the likelihood of Y for true speaker model) 
and )|( 1HYp  is the likelihood of Y for universal 
background model. 

As mentioned in section 2.1, many applications use 
diagonal covariance matrix for computational efficiency 
[5]. However, diagonal covariance matrix implies the 
assumption that the feature elements are independent. To 
decorrelate the feature, some methods are applied in 
feature-space such as principal component analysis (PCA) 
[6] and linear discriminant analysis (LDA) [7]. However, 
those methods do not guarantee a good modeling for the 
recognition.  In this paper, we propose a method to 
maximize the log likelihood ratio between the speaker 

model and UBM. The transformation is optimized by 
using particle swarm optimization (PSO) which is 
proposed by Kennedy and Eberhart [9] and has been used 
to solve many optimization problems. In PSO, each 
particle moves in the d-dimensional search space with a 
velocity according to its own previous best solution and 
its group’s previous best solution as follows 
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CP , BP , NP , p  and g  are d-dimensional vectors, R1 
and R2 also d-dimensional vectors whose elements are 
random variables between 0 and 1. Figure 2 shows PSO 
algorithm with n particles. In our PSO algorithm, the 
rotation matrix, Wj is derived by rotating coordinate basis 
using rotation matrix, R as follows: 
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The algorithm of rotating coordinate basis is described in 
algorithm 1. For the fitness of the optimization we use the 
distance measure ( ))(),( UdiagSdiagKL  which evaluates 
the distance between diagonalized speaker model and 
UBM transformed by W. Finally, we can expect that the 
distance between speaker model and UBM is maximized. 
 
Algorithm 1.  Deriving the transformation matrix 

using R 
Step 1: Let W be the identity matrix (coordinate basis) 

with ddW ×ℜ∈ . 
Step 2: 

for i=1,2,…,d-1 
     for j=i,i+1,…,d 

Rotate the plane formed with i-th axis and 
j-th axis centered at the origin by ji,θ  in R 
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Figure 2.  Our PSO algorithm to maximize the 

distance between speaker model and UBM 
 
4. Experimental Results 
 

We used the YOHO database which consists of 138 
speakers prompted to read combination lock phrases, for 
example, “67 34 85.” The features were derived using 
12th order MFCC analysis from the audio recording and 
deltas computed making up a twenty four dimensional 
feature vector. We used 20 speakers, labeled from 101 to 
120, for training and testing (as true speaker) and 18 
speakers, labeled from 121 to 140, as imposter. 
Furthermore the rest of the speakers are used for universal 
background model. The frames of data corresponding to 
silence were removed from the utterances using energy 
threshold. The YOHO database has ‘enroll’ and ‘verify’ 
mode. The ‘enroll’ consists of 4 sessions with 24 
utterances each session. And the ‘verify’ consists of 10 
sessions with 4 utterances each session. Table 1 shows the 
settings for the training and test data. 

 

Table 1.  Database setup 
 

Training data for 
speaker model 

true speaker’s 8 utterances in first session 
of ‘enroll’ mode 

Training data for 
UBM 

All utterances in ‘enroll’ mode of 
speakers who are designated for UBM 

Validation data 

1. true speaker’s 24 utterances in second 
session of ‘enroll’ mode 
2. imposters’ 180 utterances in second 
session of ‘enroll’ mode (10 utterances 
each imposter) 

Test data 

1. true speaker’s 88 utterances (third and 
fourth sessions of ‘enroll’ and all ‘verify’ 
session, 24+24+40)  
2. imposters’ 180 utterances in ‘verify’ 
(10 utterances each imposter) 
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Figure 3.  The proposed speaker verification 

system (training step) 
 

In validation test, total EER (equal error rate) is 3.14% 
and labeled 102, 104, 111, 112 speakers’ EERs are upper 
than 4.0% (in this paper, validationθ  is 4.0). So these 
speakers are transformed to maximize distance between 
speaker model and UBM. Through our proposed 
algorithm, the total EER of validation test becomes 2.73%. 
In verification test, total EER of baseline that is not 
transformed and proposed algorithm are 1.97%, 1.71% 
respectively. Table 2 and figure 5 show the result of 
speaker verification. In addition, we experiment using 
linear discriminant analysis (LDA) instead of our 
proposed algorithm. But the EER of speaker verification 
is 2.21% and poorer than baseline and our proposed 
algorithm. 
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Table 2.  Equal error rate of speaker 

verification 
 

 EER (%) 
Baseline 1.97 
Proposed algorithm 1.71 
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Figure 5.  DET curves for baseline and proposed 

algorithm 

5. Conclusions 
 

We proposed a feature transformation method based 
on particle swarm optimization for speaker verification. 
The optimized feature space is sought by rotating the axes 
of  the base feature space to make the distances of the 
recognition models large enough for discrimination.  The 
distances between the Gaussian mixture models are 
evaluated based on Kullback-Leibeler divergence. The 
optimal degree of axes rotation is found by using particle 
swarm optimization which can find the better solution 
incrementally. The proposed method is evaluated using 
YOHO database, and the feature transformation is applied 
to the speakers who show lower performances compared 
to others. As the result, the overall equal error rate is 
reduced to 1.71% from 1.97% of the baseline. For further 
research, we are considering to find a deterministic 
method for the optimized feature transformation. 
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